Clustering-Based Construction of Hidden Markov Models for Generative Kernels

نویسندگان

  • Manuele Bicego
  • Marco Cristani
  • Vittorio Murino
  • Elzbieta Pekalska
  • Robert P. W. Duin
چکیده

Generative kernels represent theoretically grounded tools able to increase the capabilities of generative classification through a discriminative setting. Fisher Kernel is the first and mostly-used representative, which lies on a widely investigated mathematical background. The manufacture of a generative kernel flows down through a two-step serial pipeline. In the first, “generative” step, a generative model is trained, considering one model for class or a whole model for all the data; then, features or scores are extracted, which encode the contribution of each data point in the generative process. In the second, “discriminative” part, the scores are evaluated by a discriminative machine via a kernel, exploiting the data separability. In this paper we contribute to the first aspect, proposing a novel way to fit the class-data with the generative models, in specific, focusing on Hidden Markov Models (HMM). The idea is to perform model clustering on the unlabeled data in order to discover at best the structure of the entire sample set. Then, the label information is retrieved and generative scores are computed. Experimental, comparative test provides a preliminary idea on the goodness of the novel approach, pushing forward for further developments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fisher Kernels for Logical Sequences

One approach to improve the accuracy of classifications based on generative models is to combine them with successful discriminative algorithms. Fisher kernels were developed to combine generative models with a currently very popular class of learning algorithms, kernel methods. Empirically, the combination of hidden Markov models with support vector machines has shown promising results. So far...

متن کامل

Information Theoretical Kernels for Generative Embeddings Based on Hidden Markov Models

Many approaches to learning classifiers for structured objects (e.g., shapes) use generative models in a Bayesian framework. However, state-of-the-art classifiers for vectorial data (e.g., support vector machines) are learned discriminatively. A generative embedding is a mapping from the object space into a fixed dimensional feature space, induced by a generative model which is usually learned ...

متن کامل

Bhattacharyya and Expected Likelihood Kernels

We introduce a new class of kernels between distributions. These induce a kernel on the input space between data points by associating to each datum a generative model fit to the data point individually. The kernel is then computed by integrating the product of the two generative models corresponding to two data points. This kernel permits discriminative estimation via, for instance, support ve...

متن کامل

Generative Kernels and Score-Spaces for Classication of Speech: Progress Report iii

May is is the third and nal progress report for Project /// (Generative Kernels and Score Spaces for Classiication of Speech) within the Global Uncertainties Programme. is project combines the current generative models developed in the speech community with discriminative classiiers. An important aspect of the approach is that the generative models are used to deene a score-space that can be us...

متن کامل

Probability Product Kernels

The advantages of discriminative learning algorithms and kernel machines are combined with generative modeling using a novel kernel between distributions. In the probability product kernel, data points in the input space are mapped to distributions over the sample space and a general inner product is then evaluated as the integral of the product of pairs of distributions. The kernel is straight...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009